Algebra 1: Chapter 5 Test Review

Name _

Simple: A = P + (Pr)t

Compound: $A = P \cdot (1+r)^t$

1. Cole has \$1200 to deposit into an account. The interest rate available for the account is 5%. Use the simple and compound interest formula to complete the table. Round to the nearest cent.

	Quantity	Time	Simple Interest Balance	Compound Interest Balance
a. If it costs \$300.00 to have your savings in a compound interest	Units			
account, would it make sense to use that account if you were only	Expression			
going to save your money for 10 years?		0		
5		3		
b. What about for 20 years?		10		
		20		

2. Dab City has a population of 26,000. Its population is increasing at a rate of 3.5%. Write a function to represent the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number.

Function: $P(t) = P(1+r)^t$

- a. 2 years b. 10 years c. 20 years
- 3. Whoville has a population of 85,000. Its population is decreasing at a rate of 2.5%. Write a function to represent the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number.

Function: $P(t) = P(1-r)^t$

a. 8 years b. 5 years c. 16 years

Complete the table and graph each function. List the y-intercept, asymptote, domain, and range.

Each of the following represents a transformation of the original function f(x) = x or $f(x) = b^x$.

Vertical Translations!!!	Horizontal Translations!!!	Reflections!!!
g(x) = (x) + b (up)	g(x) = (x+b) (left)	$g(x) = -b^x$ (across x-axis)
$g(x) = b^x + k \text{ (up)}$	$g(x) = b^{(x+c)} \text{ (left)}$	$g(x) = b^{-x}$ (across x-axis)
g(x) = (x) - b (down)	g(x) = (x-b) (right)	
$g(x) = b^x - k \text{ (down)}$	$g(x) = b^{(x-c)}$ (right)	

- 8. Write the equation of each function after the translation described.
 - a. f(x) = -8x after a translation 6 units to the right
 - b. $f(x) = 4^x$ after a translation 3 units up
 - c. $f(x) = 2x^2$ after a translation 2 units left
 - d. f(x) = 4x after a translation 7 unites down
 - e. $f(x) = 5x^2$ after a reflection over the x-axis
 - f. $f(x) = 2^x$ after a reflection over the y-axis
- 9. Describe each graph in relation to its basic function.
 - a. Compare $g(x) = (x+2)^2$ to the basic function $f(x) = x^2$
 - b. Compare $g(x) = b^x + 1$ to the basic function $f(x) = b^x$
 - c. Compare $g(x) = b^{-x}$ to the basic function $f(x) = b^{x}$
 - d. Compare g(x) = (x-7) to the basic function f(x) = x
 - e. Compare $g(x) = -4x^2$ to the basic function $f(x) = 4x^2$
 - f. Compare $g(x) = (b-2)^x$ to the basic function $f(x) = b^x$

10. Each coordinate plane shows the graph of f(x). Sketch the graph of g(x).

