5.3 (Part 2) Horizontal Translations!

Turn to page 319 and have desmos.com ready.

PROBLEM 2 Horizontal Translations

Consider the three exponential functions shown, where $h(x)=2^{x}$ is the basic function.

- $h(x)=2^{x}$
- $v(x)=2^{(x+3)}$
- $w(x)=2^{(x-3)}$

In Problem 1 Vertical Translations, the operations that produced the vertical translations were performed on the function $h(x)$. That is, 3 was added to $h(x)$ and 3 was subtracted from $h(x)$. In this problem, the operations are performed on x, which is the argument of the function.
The argument of a function is the variable on which the function operates. So, in this case, 3 is added to x and 3 is subtracted from x.

You can write the given functions $v(x)$ and $w(x)$ in terms of the basic function $h(x)$. To write $v(x)$ in terms of $h(x)$, you just substitute $x+3$ into the argument for $h(x)$, as shown.

$$
\begin{gathered}
h(x)=2^{x} \\
v(x)=h(x+3)=2^{(x+3)}
\end{gathered}
$$

So, $x+3$ replaces the variable x in the function $h(x)=2^{x}$.

1. Write the function $w(x)$ in terms of the basic function $h(x)$.

$$
w(x)=h(x-3)=2^{(x-3)}
$$

2. Use a graphing calculator to graph each function with the bounds $[-10,10] \times[-10,10]$. Then, sketch the graph of each function. Label each graph.

(2) $h(x)=2^{x}$
($v(x)=2^{(x+3)}$
($w(x)=2^{(x-3)}$

3. Compare the graphs of $v(x)$ and $w(x)$ to the graph of the basic function. What do you notice? This is tricky!!! Look carefully.

The graph of $v(x)$ is shifted to the left 3 units, and the graph of $w(x)$ is shifted to the right 3 units.
4. Write the x-value of each ordered pair for the three given functions. You can use your graphing calculator to determine the x-values.

Go back to your graphs on desmos and use the "table" feature to find your x-values.

$h(x)=2^{x}$	$v(x)=2^{(x+3)}$	$w(x)=2^{(x-3)}$
$\left(-2, \frac{1}{4}\right)$	$\left(-5, \frac{1}{4}\right)$	$(\stackrel{1}{4})$
$\left(-1, \frac{1}{2}\right)$	$\left(-4, \frac{1}{2}\right)$	$\left(2, \frac{1}{2}\right)$
$\xrightarrow{0}$, 1)	$(-3,1)$	$(3,1)$
$\stackrel{1}{\square}, 2)$	$(-2,2)$	$(4,2)$
$\stackrel{2}{2}, 4)$	$(-1,4)$	$(5,4)$

5. Use the table to compare the ordered pairs of the graphs of $v(x)$ and $w(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice?

For the same y-coordinate, the x-coordinate of $v(x)$ is 3 less than $h(x)$ and the x-coordinate of $w(x)$ is 3 more than $h(x)$.

A horizontal translation of a graph is a shift of the entire graph left or right. A horizontal translation affects the x-coordinate of each point on the graph.

You can use the coordinate notation shown to indicate a horizontal translation.
Turn to Page 321, \#7.
7. Describe each graph in relation to its basic function.
a. Compare $f(x)=b^{x-c}$ to the basic function $h(x)=b^{x}$ for $c>0$.

The graph of $f(x)$ is c units to the right of the graph of $h(x)$.
b. Compare $f(x)=b^{x-c}$ to the basic function $h(x)=b^{x}$ for $c<0$.

The graph of $f(x)$ is c units to the left of the graph of $h(x)$.
8. The graph of a function $t(x)$ is shown. Sketch the graphs of $t^{\prime}(x)$ and $t^{\prime \prime}(x)$.
a. $t^{\prime}(x)=t(x+3)$
b. $t^{\prime \prime}(x)=t(x-1)$

Complete the table by describing the graph of each function as a transformation of its

Skip to the table on page 326.
basic function.

Function Form	Equation Information	Description of Transformation of Graph
$f(x)=(x)+b$	$b>0$	Vertical shift up b units.
	$b<0$	Vertical shift down b units.
$f(x)=(x-b)$	$b>0$	Horizontal shift right b units.
	$b<0$	Horizontal shift left b units.
$f(x)=b^{x}+k$	$b>1, k>0$	Vertical shift up k units.
	$b>1, k<0$	Vertical shift down k units.
$f(x)=b^{x-c}$	$b>1, c>0$	Horizontal shift right c units.
	$b>1, c<0$	Horizontal shift left c units.

