Let the Transformations Begin!

Translations of Linear and Exponential Functions

Turn to page 313 in your book and open Desmos.com on your Chromebook.

PROBLEM 1 Vertical translations

Consider the three linear functions shown.

- $g(x)=x$
- $c(x)=(x)+3$
- $d(x)=(x)-3$

The first function is the basic function. A basic function is the simplest function of its type.

In this case, $g(x)=x$ is the simplest linear function. It is in the form $f(x)=a x+b$, where $a=1$ and $b=0$.

You can write the given functions $c(x)$ and $d(x)$ in terms of the basic function $g(x)$.
For example, because $g(x)=x$, you can substitute $g(x)$ for x in the equation for $c(x)$, as shown.

$$
\begin{aligned}
& c(x)=(x)+3 \\
& c(x)=g(x)+3
\end{aligned}
$$

1. Write the function $d(x)$ in terms of the basic function $g(x)$.

$$
d(x)=g(x)-3
$$

2. Describe the operation performed on the basic function $g(x)$ to result in each of the equations for $c(x)$ and $d(x)$.

You are adding 3 to one function and subtracting 3 from the other.

3. Use desmos.com to graph each function on the same graph. You don't need to change the parameters for your graph. Sketch each graph and label.
(1) $g(x)=x$
(1) $c(x)=x+3$

$$
\text { (®) } d(x)=x-3
$$

$$
g(x)=x
$$

4. Compare the y-intercepts of the graphs of $c(x)$ and $d(x)$ to the y-intercept of the basic function $g(x)$. What do you notice?

The y-intercept for $c(x)$ is 3 units above the y-intercept of the basic function. The y-intercept for $d(x)$ is 3 units below the y-intercept of the basic function.
5. Write the y-value of each ordered pair for the three given functions.

$g(x)=x$	$c(x)=(x)+3$	$d(x)=(x)-3$
$(-2,-2)$	$(-2, \underline{1})$	$(-2, \ldots$-5
$(-1,-1)$	$(-1,2)$	$(-1, \underline{-4})$
$(0, \longrightarrow)$	$(0,3)$	$(0,-3)$
$(1, \underline{1})$	$(1,4)$	(1, -2)
$(2, \xrightarrow{2})$	$(2, \xrightarrow{5})$	$(2,-1)$

6. Use the table to compare the ordered pairs of the graphs of $c(x)$ and $d(x)$ to the ordered pairs of the graph of the basic function $g(x)$. What do you notice?

For the same x-coordinate, the y-coordinate of $c(x)$ is 3 more than the y coordinate of $g(x)$. For the same x-coordinate, the y-coordinate of $d(x)$ is 3 less than the y-coordinate of $g(x)$.

A vertical translation is a type of transformation that shifts the entire graph up or down. A vertical translation affects the y-coordinate of each point on the graph.

Vertical shift occurs when a number is added or subtracted to the whole basic function!

Now, let's consider the three exponential functions shown. (Page 316)

- $h(x)=2^{x}$
- $s(x)=2^{x}+3$
- $t(x)=2^{x}-3$

In this case, $h(x)=2^{x}$ is the basic function because it is the simplest exponential function with a base of 2 . It is in the form $f(x)=a b^{x}$, where $a=1$ and $b=2$.

With your group answer questions 8-10
8. Write the functions $s(x)$ and $t(x)$ in terms of the basic function $h(x)$. Then, describe the operation performed on the basic function $h(x)$ to result in each of the equations for $s(x)$ and $t(x)$.

$$
\begin{aligned}
& s(x)=h(x)+3 \\
& t(x)=h(x)-3
\end{aligned}
$$

A constant, 3 , is added to $h(x)$ to result in the function $s(x)$. A constant, 3 , is subtracted from $h(x)$ to result in the function $t(x)$.
9. Using desmos.com, graph each function. Then, sketch the graph of each function and label.
(1) $h(x)=2^{x}$
($s(x)=\left(2^{x}\right)+3$
($) ~ t(x)=\left(2^{x}\right)-3$

10. Compare the y-intercepts of the graphs of $s(x)$ and $t(x)$ to the y-intercept of the graph of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the graphs of the linear functions in Question 4?

The graph of $s(x)$ is 3 units above the graph of the basic function. The graph of $t(x)$ is 3 units below the graph of the basic function. Yes.
11. Write the y-value of each ordered pair for the three given functions.

$h(x)=2^{x}$	$s(x)=\left(2^{x}\right)+3$	$t(x)=\left(2^{x}\right)-3$
$\frac{\left(-2, \frac{1}{4}\right)}{\text { or } .25}$	$\frac{\left(-2, \frac{13 / 4)}{\text { or } 3.25}\right.}{}$	$\frac{\left(-2, \frac{-11 / 4}{\text { or }-2.75}\right.}{}$
$\frac{\left(-1, \frac{1 / 2}{}\right)}{\text { or } .5}$	$\frac{(-1,7 / 2)}{\text { or } 3.5}$	$\frac{\left(-1, \frac{-5 / 2}{\text { or }-2.5}\right)}{}$
$(0,1$)	$(0,4)$	(0, -2 $)$
$(1,2)$	$(1,5)$	(1, -1
$(2,4)$	$(2, \square)$	$(2, \underline{1})$

12. Use the table to compare the ordered pairs of the graphs of $s(x)$ and $t(x)$ to the ordered pairs of the graph of the basic function $h(x)$. What do you notice? Are the results the same as when you compared the y-values for the linear functions in Question 6?

For the same x-coordinate, the y-coordinate of $s(x)$ is 3 more than the y-coordinate of $h(x)$. For the same x-coordinate, the y-coordinate of $t(x)$ is 3 less than the y-coordinate of $h(x)$. Yes.
13. Explain how you know that the graphs of $s(x)$ and $t(x)$ are vertical translations of the graph of $h(x)$.

Because every point is either shifted up the same amount or down the same amount.

Homework: Worksheet

