$\qquad$
Use the simple and compound interest formula to complete the table. Round to the nearest cent.

$$
\text { Simple: } A=P+(P r) t \quad \text { Compound: } A=P \cdot(1+r)^{t}
$$

1. Ye has $\$ 700$ to deposit into an account. The interest rate available for the account is $6 \%$.
a. If it costs $\$ 200.00$ to have your savings in a compound interest account, would it make sense to use that account if you were only going to save your money for 10 years?
b. What about for 20 years?

| Quantity | Time | Simple Interest <br> Balance | Compound <br> Interest Balance |
| :---: | :---: | :---: | :---: |
| Units |  |  |  |
|  |  |  |  |
|  | 0 |  |  |
| 3 |  |  |  |
| 10 |  |  |  |
| 20 |  |  |  |

2. Rapperville has a population of 18,000 . Its population is increasing at a rate of $3.2 \%$. Write a function to represent the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number.

Function: $P(t)=P(1+r)^{t}$
a. 2 years
b. 10 years
c. 20 years
3. Doglandia has a population of 85,000 . Its population is decreasing at a rate of $2.8 \%$. Write a function to represent the population as a function of time. Determine the population after each given number of years. Round your answer to the nearest whole number.

Function: $P(t)=P(1-r)^{t}$
a. 8 years
b. 5 years
c. 16 years

Complete the table and graph each function. List the y-intercept, asymptote, domain, and range.
4. $y=3^{x}$


y-intercept:
domain:
asymptote:
range:
5. $y=\left(\frac{1}{3}\right)^{x}$

| $\mathbf{x}$ | $\mathbf{y}$ |
| :---: | :---: |
| -2 |  |
| -1 |  |
| 0 |  |
| 1 |  |
| 2 |  |

y-intercept:
domain:

asymptote:
range:
7. $y=-3 \cdot\left(\frac{1}{2}\right)^{x}$

| $\mathbf{x}$ | $\mathbf{y}$ |
| :---: | :---: |
| -2 |  |
| -1 |  |
| 0 |  |
| 1 |  |
| 2 |  |


y-intercept: asymptote:
domain:
range:

