\qquad
Recursive - When you just want to find the "next" term. $a_{n}=a_{n-1}+d \quad g_{n}=g_{n-1} \bullet r$ Now-Next Formula - you have a number now, what's the "next" number? (This is what we started with - it's just a way to write it as a formula.)

Examples:
30, 70, 110, \qquad 100, -50, 25, \qquad , ...

Determine whether each sequence is arithmetic or geometric. Then use the appropriate recursive formula to determine the next term or terms in each sequence.

1. $4,8,16,32, \ldots$ \qquad , ...
2. $16,30,44,58, \ldots$ \qquad , ...
3. $-5,20,-80, \ldots$ \qquad \ldots, \ldots
\qquad .
4. $2,-6,18, \ldots$ \qquad 6. $7.3,9.4,11.5, \ldots$ \qquad , ...

Don't forget Explicit! - When you want to find the " n " ${ }^{\text {" }}$ term.

$$
a_{n}=a_{1}+d(n-1) \quad g_{n}=g_{1} \bullet r^{n-1}
$$

(Finding a term down the line somewhere - This is when it doesn't make sense to use the formula for just finding the "next" term.)

Review: Determine whether each sequence is arithmetic or geometric. Then use the appropriate explicit formula to determine the unknown term in the sequence.
7. Determine the $20^{\text {th }}$ term of the sequence $1,4,7, \ldots$
9. Determine the $15^{\text {th }}$ term of the sequence 600, 300, 150, ...
8. Determine the $12^{\text {th }}$ term of the sequence $5,15,45, \ldots$
10. Determine the $75^{\text {th }}$ term of the sequence -200, -100, 0, ...

