Name

y = -x + 3

y = 3x - 3

- 1. What is the solution for the linear system of equations? y = 3x + 5y = 2x + 20
- 2. Solve this system of equations using substitution. x = -7y + 34x + 7y = 32

3. Which graph represents the solution for the linear system of equations?

- 4. Use elimination to solve the system of equations. 2x + 5y = 176x - 5y = -9
- 5. Solve this system of equations using elimination. 3x + 4y = 186x 2y = 6
- 6. Music Central offers a \$6 membership and charges \$4 for each downloaded song. Save Music charges \$12 for its membership and an additional \$1 per song. How many songs must Grant download so the cost is the same for both companies

- 8. Curb Side Taxi charges a flat rate of \$2.25 plus \$0.50 per mile. Taxi-4-You charges a flat rate of \$1.25 plus \$0.75 per mile. Write a system of equations to represent each option.
 - A.y = 2.25 + 0.5xB.y = 2.25x + 0.5y = 1.25 + 0.75xy = 1.25x + 0.75

- 12. Marli has \$1500 in her savings account. She withdraws \$110 each month, where x represents the number of months. Write an equation for this situation.
- 13. Which inequality has a graph with a dotted/dashed line?
 - **A.** $y \ge 15 5x$ **B.** $y \ge 11 + 4x$
 - **D.** $y \ge 11 + 42$
 - **C.** y < 12 + 3x**D.** $y \le 16 - 2x$
 - **D.** $y \le 10 27$
- 14. Which inequality is represented by the graph?

15. Which system of linear inequalities is represented by the graph?

16. Write a system of equations representing the following situation?

Brady will bike and jog for **no more than** 60 minutes. He bikes 0.4 mph and jogs 0.1 mph, and he wants to go **at least** 12 miles.

17. Which graph most clearly shows a positive correlation?

18. Which of these functions has a *y*-intercept of (0, 7)?

A.
$$f(x) = x^2 + 2x + 7$$

B. $f(x) = 7x^2 - 3x + 1$
C. $f(x) = 7(x - 1)(x + 5)$
D. $f(x) = 3x(x - 7)$

19. A parabola consists of the *x*-intercepts: (3, -2) and (7, -2). What is the axis of symmetry?

22. Which equation represents a parabola that opens upward and has x-intercepts at (4, 0) and (-6, 0)?

23. How does the graph of $f(x) = -(x-5)^2 + 3$ compare to the graph of $f(x) = x^2$?

- **24.** Which equation represents a parabola with zeros or x-intercepts at (7, 0) and (-3, 0)?
- **25.** What is the vertex of the parabola $f(x) = x^2 2x 8$ if the axis of symmetry is x = 1?
- **26.** Which equation represents a parabola with a vertex at (7, -3)?
- 27. What is the vertex of the parabola $f(x) = x^2 + 5$ if the axis of symmetry is x = 0?
- **28.** How is this graph different from the graph of the basic quadratic function $f(x) = x^2$?

29. What are the coordinates of the vertex of the graph? Is it a maximum or minimum?

30. Which function represents a parabola that is translated 2 units to the left and 6 units down from the function $f(x) = x^2$?

31. Subtract the two polynomial expressions. $(3x^2 + 8x + 6) - (2x^2 + 5x - 2)$

32. Add the two polynomial expressions. $(2x^4 - 3x) + (3x^3 + 7x + 3)$

33. What is the greatest common factor of the polynomial? (Hint: What can we divide out?) $6x^2 + 9$

34. Multiply using FOIL, the Distributive Property or a multiplication table. (2x - 9)(5x + 6)

35. Multiply using the Distributive Property or a multiplication table. $(x + 5)(4x^2 - 3x - 4)$

36. Simplify. 4x(3x + 8)

37. Use the multiplication table to find the product of the polynomials.

A. B.	$36x^2 - 3x - 14$ $36x^2 - 24x - 14$	•	3 <i>x</i>	-2
C.	$36x^2 - 21x - 14$	12 <i>x</i>	36x ²	-24 <i>x</i>
D .	$36x^{*} - 45x - 14$	7	21 <i>x</i>	-14

38. Factor: $d^2 + 9d + 14$

39. Factor: $x^2 - x - 56$

41. <u>Solve</u> the polynomial by factoring. $x^2 - 25$

42. Solve the polynomial by factoring. $x^2 - 16 = 0$

Factor each of the following polynomials. Then, find the solutions.

43. $f(x) = x^2 - 14x + 49$

44. $f(x) = x^2 + 6x + 8$

46. What are the zeros of the quadratic equation: $2x^2 - 7x - 4 = 0$?

47. Use the quadratic formula to find the roots of the quadratic equation. $2x^2 - 7x - 4 = 0$ $x = \frac{-b \pm \sqrt{(b)^2 - 4ac}}{2a}$

48. Use the quadratic formula to find the roots of the quadratic equation: $d^2 - 26d - 25$

49. What do the solutions (or zeros) represent for a quadratic function?

What is the simplified form of each expression?

50. (9.2)⁰

51.
$$\frac{8t^{-4}}{d}$$

52. $x^8 \cdot 2y^{10} \cdot 5x^5$

•

53. $(n^2)^7$

54.
$$\frac{m^5}{m^2}$$

55.
$$\left(\frac{b}{7}\right)^2$$