\qquad
Determine the independent and dependent quantities in each scenario.

1. Adam is selling lemonade at his stand. He can sell 5 cups of lemonade each hour.

Independent $=$ \qquad Dependent $=$ \qquad
2. Serena is a growing child. Her height changes each year that her and her parents measure how tall she is on Christmas Day.

Independent $=$ \qquad Dependent $=$ \qquad

Circle the graph that best models each scenario.

3. Kylie is riding a ski lift. The lift begins going up the hill at a steady rate, then stops for 3 and a half minutes. After that, it begins going back uphill at the same rate.

4. Harry throws a baseball up in the air and it comes back down to the ground.

5. Determine whether each graph is discrete or continuous.

6. Define discrete graph with a couple of words.
7. Define continuous graph with a couple of words.

Fill in the blank with relation or function for 8 and 9.
8. A relation where for each input value there exists exactly one output value (for every x value, there is only one y value) is a \qquad _.
9. The mapping between a set of inputs and a set of outputs is a \qquad .

Fill in the blank with domain, range, or vertical line test for 10,11 , and 12.
10. Define the vertical line test.
11. The set of all input values of a relation is called the \qquad .
12. The set of all output values of a relation is called the \qquad .
13. Draw one function and one non-function.

The function $A(t)=5 t$ represents the total amount of money in dollars Carmen earns babysitting as a function of time in hours. Evaluate each function for the given input value.

$$
A(t)=5 t
$$

14. $\quad A(8)=$

$$
A(t)=5 t
$$

15. $\mathrm{A}(3.5)=$

The function $D(h)=9 \mathrm{~h}$ represents the amount of money that you make each hour that you work.
16. $\mathrm{D}(\mathrm{h})=45$
17. $\mathrm{D}(\mathrm{h})=108$
18. $\mathrm{D}(\mathrm{h})=225$

Substitute and solve for \boldsymbol{x} to determine the exact value of each intersection point.
19. $f(x)=3 x+20$ when $f(x)=62$
20. $f(x)=-3 x+4$ when $f(x)=-5$

A plane ascends at a rate of 1200 feet per second until it reaches its max height of 30,000 feet. Fill out a table to measure the plane's height over time.
21. Complete the table.
22. What are the independent and dependent quantities in this problem situation?
$I=$ \qquad $\mathrm{D}=$ \qquad
23. Determine the unit rate of change for the problem.
24. Use function notation to determine the height of the plane at a time of 4 seconds.

